Установившийся режим

Материал из Wiki Power System
Перейти к: навигация, поиск

Установившийся режим - это режим работы энергосистемы, при котором параметры режи­ма могут приниматься неизменными [1].

Общие положения

Состояние энергосистемы можно считать установившимся (стационарным), если параметры описывающие её поведение, не меняются с теченеием времени или меняются по периодическому закону от времени (с постоянным периодом, амплитудой и фазой). при этом математическую модель исследуемых процессов в энергсосистеме можно упростить до системы линейных (нелинейных) уравнеий, вместо рассмотрения системы диффференциальных (интегро-дифференциальных) уравнений.

Очевидно, что в достаточно крупной энергосистеме полностью установившегося режима не существует, т.к. с увеличением числа элементов объединённых в энергосистему, вероятность того, что хотя бы один из изменит своё включённое состояние или режим работы достаточно велика. Вследствие этого, можно считать, что в единой энергосистеме постоянно происходит один или несколько переходных процессов и энергосистема находится в переходном режиме. Но для исследования большинства процессов в крупной энергосистеме можно рассматривать квазиустановившиеся режимы, т.е. такие режимы когда параметры изменяются незначительно и данным изменениями можно пренебречь.

Исследование параметров установившегося режима энергосистемы важно для решения целого ряда практических задач которые перечислены здесь.

Расчёт параметров установившегося режима

При расёте параметров установившегося режима обычно принимают следующие допущения (список не полный):

  1. Частота в энергосистеме неизменна.
  2. Высшие гармонические составляющие отсутствуют.
  3. Взаимоиндукция между элементами не учитвыается.
  4. Нагрузка по фазам симметрична (в случае использования однолинейных расчётных моделей).
  5. Параметры установившегося режима не зависят от времени.
  6. В большинстве случаев влияние внешних факторов (интенсивность освещения, скорость ветра, наличие глолёда, изменение электрчиеские параметров при механических деформациях и т.д.) не учитывается.
  7. Линии электропередачи представлены сосредоточенными параметрами (при длинах линий менее 5% от длины электромагнитной волны).

Расчёт установившегося режима заключается в оценке всех параметров режима (в первую очередь узловых напряжений и потоков мощностей по ветвям), при заданных параметрах электрической сети:

  • схема соединений элементов электрчиеской сети;
  • электрчиеские параметры элементов (сопротивления, проводимости шунтов, коэффициенты трансформации и т.д.);
  • мощности нагрузок, а также их статические характеристики по напряжению;
  • мощности генераторов и диапазон регулирования реактивной мощности.

Парметры установившегося режима связаны между собой некоторыми закономерностями, которые можно вывести на основе правила Кирхгофа.

Математическое моделирование установившегося режима требует составление математического описания электрической сети. Это описание в первую очередь базируется на расчётной схеме, которая представляет собой идеализацию реальной электрической сети. Элементами расчётной схемы являются:

На основе составленной расчётной схемы выполняется построение схемы замещения. Схема замещения электрической сети строится на основе схем замещения отдельных элементов с сосредоточенными парамтерами.

Под математической моделью электрчиеской сети можно понимать систему уравнений связывающих параметры схемы замещения, исходной информации по элементам расчётной схемы и неизвестных параметров установившегося режима. Важно отметить, что для одной и той же схемы замещения можно составить различные системы уравнений (математические модели), обладающие разными вычислительными характеристиками.

Основные математические модели для оценки парамтеров установившегося режима:

  1. Уравнения узловых напряжений (наиболее распространённая модель).
  2. Контурные уравнения.

Представление элементов энергосистемы

Генератор

В установившемся режиме генераторы обычно представляют двумя способами:

  1. Источник постоянного напряжения и активной мощности (PV узел).
  2. Источник постоянной активной и реактивной мощности (PQ узел).

В случае когда генератор представлен источником постоянного напряжения, необходимо в процессе расчётов, учитывать регулировочный диапазон по реактивной мощности. Зачастую эта задача решается алгоритмически в ходе итерационной оценки параметров установившегося режима. В случае, если оценка величины реактивной мощности превышает регулировочный диапазон, то генератор необходимо представить в виде PQ узла.

Трансформатор

Трансформатор в расчётах обычно представлен в виде ветвей с сосредоточенными параметрами и постоянным коэффициентом трансформации. Более подробно представление трансформатора в установившихся режимах рассмотрено здесь.

Нагрузка

Нагрузочные узлы обычно представлены в виде усзлов с известной активной и реактивной мощности и в математической модели обычно представлены следующим образом:

  1. Зависимость активной и реактивной мощности заданы некоторой функциональной зависимостью от напряжения, называемой статической характеристикой нагрузки.
  2. Постоянное значение потребления активной и реактивной мощности. С формальной точки зрения это тоже статическая характеристика нагрузки, при которой мощность не зависит от напряжения.

Линии электропередачи

В электричской сети для предачи электрчиеской энергии служат кабельные и воздушные линии электропередач. В реальности сопротивление линии электропередачи распределено по всей её длине, что приводжит к необходимости учитывать её волновые свойства, но это в значительной степени усложняет методы оценки параметров установившегося режима по математической модели. По этой причине линии элеткропередачи обыно представлены в виде сосредоточенных сопротивлений и шунтов (или цепочки сосредоточенных сопротивлений и шунтов). Более подробно схема замещения линиии электропередачи рассмотрена здесь.

Выключатели

При подробном моделировании схемы распределительного устройства подстанции возникает необходимость представления выключателей в расчётной математической модели.

В практике расчётов наибольше распространение получили математические модели на основе уравнений узловых напряжений. Основной трудностью моделирования выключателей в таких моделях является их низкое электрчиеское сопротивление [math]Z \lt \lt 1 [/math] [Ом]. Этот факт приводит к следующим трудностям при составлении математической модели:

  1. Пусть [math]Z = 0 [/math] [Ом], при составлении уравнений узловых напряжений в матрице проводимостей появляются элементы с бесконечными проводимостями, что делает невозможным поиск решения этой системы.
  2. Для решения первой проблемы выключатель можно представить в виде очень маленького сопротивления [math]R = 0,001 [/math] [Ом], что может привести к расчётной неустойчивости в случае когда к узлу примыкают только выключатели.
  3. В случае исключения выключателей выключателей из расчётной модели потребуется дополнительные алгоритмы для оценки потоков активной и реактивной мощности через выключатель.


Шунтовые элементы

Для регулирования напряжения в узлах электрической сети применяются различные управляемые и неуправляемые компенсирующие устройства. С точки зрения математической модели все эти устройства можно представить в иде шунтов в узлах. Более подробно схемы замещения компенсирующих устройств рассмотрены здесь.

Источник

  • ГОСТ 21027-75 Системы энергетические. Термины и определения.
  • Вычислительные модели потокораспределения в электрических системах / Б. И. Аюев [и др.] ; под ред. П. И. Бартоломея. - Москва : Флинта : Наука, 2008. - 254, [1] с. : ил., табл.; 22 см.; ISBN 978-5-9765-0697-8.