Режим энергетической системы

Материал из Wiki Power System
Версия от 20:00, 16 июня 2019; Windsl (обсуждение | вклад) (Новая страница: «'''Режим энергетической системы''' — это некототорое состояние, которое определяется зна…»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Режим энергетической системы — это некототорое состояние, которое определяется значениями параметров режима: мощности, напряжения, токи, частота и другие физические величины характеризующие процесс преобразования, передачи и распределения электрической энергии. Всё величины характеризующие режим энергосистемы называются параметры режима.

Общие положения

При решении различных задач управления энергосистемами различают два вида режимов энергосистемы:

Переходные режимы связаны с возникновением переходных процессов, при которых происходит изменение электрического состояния элементов системы, обусловленное как естественными причинами, так и работой устройств автоматики.

В переходных режимах происходит закономерное изменение во времени одного или нескольких параметров режима в результате действия определенных причин, называемых возмущающими воздействиями. Переходные режимы делятся на

В волновых переходных режимах происходит локальное изменение электрического состояния системы, сопровождаемое резким увеличением электрического разряда в линиях электропередачи с повышением напряжения, связанного с атмосферными воздействиями. Они являются быстродействующими процессами: скорость изменения параметров порядка [math]10^3 - 10^8[/math] Гц. Опасность волновых переходных процессов заключается в появлении перенапряжений, приводящих к повреждению изоляции элементов энергосиситем и т. д.

Следует отметить, что при волновых переходных процессах не происходит изменения относительного положения роторов электрических машин и скорости их вращения.

Электромеханические переходные процессы являются низкочастотными. Скорость их протекания изменяется от 0,1 Гц до 50 Гц. Происходит изменение как электрических, так и механических параметров режима. Частным случаем электромеханического переходного режима является режим почти переодического изменения параметров режима — режим синхронных качаний, а также режим ресинхронизации генератором, электростанций и энергосистем, который обычно следует за режимом синхронных качаний.

Электромагнитные переходные процессы сопровождаются изменением электромагнитного состояния элементов ЭС. Механические параметры режима остаются неизменными. Скорость протекания от 50 до 150 Гц.

С точки зрения анализа величины допустимых значений парамтеров режима принято различать:

  • нормальный установившийся режим, при котором значения параметров режима близки к значениям необходимым для правильной работы потребителей, или лежат в некотором заданном интервале этих значений;
  • нормальный переходный режим, имеющий место при обычной для эксплуатации измениях схемы элеткрической сети, а также плновых изменениях режимов работы потребителей и электрических станций;
  • аварийный переходный режим, при котором вследствие аварийных изменений в энергосистеме параметры электрического режима могут значительно и резко отклоняться от значений нормального установившейгося режима;
  • послеаварийный установившийся режим, наступающий после окончания аварийного переходного процесса после аварийного отключения элементов энергетической системы; исход аварии считается благоприятным, если парамтеры послеаварийного установившегося режима близки к параметрам нормального установившегося режима.

Обычно считают, что режим энергосистемы изместен (определён), если известны значения всех параметров режима для всех элементов энергосистемы. Например, напряжение на зажимах генератора, характеризует величину напряжения в соответствующей узловой точке; потоки активной и реактивной мощности по концам линии электропередачи характеризует режим работы сетевого элемента (ветви).

Эти примеры парамтеров режима показывают, что все параметры режима можно разделить на две большие группы:

  • параметры режима узловых точек (напряжение, узловые иньекции мощности и т. д.);
  • параметры режима ветвей, характеризующие нагрузку этих ветвей (ток, поток активной и реактивной мощности и т. д.).

Таким образом, одной из основных задач установления режима энергосистемы является обеспечение требуемой величины параметров режима в её узловых точках. Обеспечить требуемой велчины узловых параметров режима можно добиться только регулированием параметров режима подходящих к узлу ветвей. так например, для обеспечения требуемой величны напряжения в узле можно регулировать величину перетока реактивной мощности.

Параметры режима отдельных ветвей энергоситсемы должны устанавливаться так, чтобы обеспечить требуемые величны узловых парамтеров режима. Большое множество решений этой задачи определяет возможность постановки задачи оптимизации режима работы отдельных ветвей энергосистемы или всей энергосистемы в целом.